Вы на портале

Как искусственный интеллект может предсказать исход судебного спора

Искусственный интеллект (далее — ИИ) становится все более значимым инструментом в различных отраслях, включая юриспруденцию. Одной из наиболее интересных и перспективных возможностей ИИ в этой сфере является прогнозирование исходов судебных дел. Эта технология предлагает новые горизонты для юридической практики, позволяя адвокатам, судьям и другим участникам судебных процессов принимать более обоснованные решения.

Шкода Александр
Шкода Александр
Адвокат Минской областной коллегии адвокатов
709 Shape 1 copy 6Created with Avocode.

Обучение и принципы работы ИИ в прогнозировании судебных исходов

Используемый для прогнозирования исходов судебных споров ИИ обычно основывается на машинном обучении и обработке больших баз данных. Для создания таких систем требуется огромный массив информации, включая нормативные правовые и судебные акты, прецеденты и другие релевантные данные. Эти данные загружаются в систему, которая затем обучается распознавать закономерности и делать прогнозы на основе полученных данных.

Основной принцип работы ИИ в юридической сфере заключается в анализе текстовой информации. Системы ИИ используют методы обработки естественного языка (Natural Language Processing, NLP) для понимания и интерпретации текстов правовых документов. Это позволяет ИИ извлекать ключевую информацию и выявлять важные закономерности.

Как уже было отмечено, для того чтобы ИИ мог эффективно предсказывать исходы судебных споров, его обучают на основе соответствующей информации. Процесс обучения и основные принципы работы таких систем включают несколько ключевых этапов.

ЭтапОписание
Сбор данныхСобираются большие массивы данных, включающие законодательные акты, судебные постановления, прецеденты и пр. Эти данные могут поступать из различных источников, включая публичные базы данных и частные юридические архивы
Предварительная обработка данныхСобранные данные очищаются и структурируются: удаляются дублирующиеся записи, исправляются ошибки, данные преобразовываются в формат, удобный для машинного обучения. Для того чтобы защитить конфиденциальность участников судебных процессов, данные анонимизируются
Анализ и разметка данныхДля обучения ИИ необходимо, чтобы данные были размечены, то есть снабжены метками, указывающими на ключевые характеристики дела и его исход. Это может быть указание типа дела, участвующих сторон, использованных законов и вынесенных решений
Разработка моделейНа этом этапе создаются и обучаются модели машинного обучения. В правовой сфере часто используются модели на основе нейронных сетей, которые способны анализировать текстовые данные и выявлять сложные закономерности. Обучение моделей происходит на размеченных данных, чтобы они могли учиться на примерах реальных судебных дел
Тестирование и валидацияПосле обучения модели тестируются на новых данных, которые не использовались в процессе обучения. Это позволяет оценить точность и надежность прогнозов. Чтобы убедиться, что модель может эффективно работать на разных наборах данных, проводится валидация
Внедрение и использованиеОбученные модели интегрируются в системы и начинают использоваться для анализа и прогнозирования судебных дел. Системы ИИ продолжают обучаться и совершенствоваться по мере поступления новых данных и судебных актов

 

Мировой опыт

По мере того, как ИИ становится более совершенным и доступным, его внедрение в юридическую сферу по всему миру набирает обороты. Разные страны по-разному подходят к интеграции ИИ в юридическую практику, отражая свои уникальные правовые традиции, культурные особенности и технологические возможности. Уже существует несколько успешных примеров разработок и проектов, используемых за рубежом:

1. CaseCrunch. В 2017 г. британский стартап CaseCrunch провел эксперимент, в ходе которого их ИИ соревновался более чем со 100 юристами в предсказании исходов дел по различным спорам. В итоге ИИ предсказал исходы с точностью 86,6 %, в то время как юристы достигли точности лишь 62,3 %. Это показало, что ИИ может быть точным и эффективным инструментом в анализе судебных дел, но не доказывает, что алгоритмы лучше предсказывают результаты. Чтобы ИИ конкурировать с юристами, и тем, и другим важно задавать правильные вопросы.*

* Подробная информация об эксперименте на сайте юридического факультета Кембриджского университета

2. COMPAS. В США система COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) используется для оценки вероятности рецидива преступлений. Искусственный интеллект анализирует множество факторов, включая прошлые преступления и социально-экономическое положение, чтобы предсказать, насколько вероятно, что проверяемый совершит новое преступление. Однако система вызвала много споров из-за обвинений в предвзятости и дискриминации (например, риски совершения потенциальных противоправных деяний у афроамериканцев оценивались выше).*

* Подробная информация о COMPAS на сайте Департамента исправительных учреждений штата Висконсин

3. Predictice. Французский сервис Predictice использует ИИ для анализа судебных дел и прогноза их исходов. Компания утверждает, что их ИИ может предсказать результаты с точностью до 80 %. По информации с официального сайта, французские адвокаты уже используют Predictice для оценки рисков и разработки стратегий ведения дел, что помогает клиентам принимать более обоснованные решения после консультаций.*

* Подробная информация о сервисе Predictice на официальном сайте

Преимущества и недостатки использования ИИ в судебной аналитике

Применение ИИ для прогнозирования исходов судебных дел открывает новые возможности для повышения точности, эффективности и объективности в юридической практике. Однако несмотря на очевидные преимущества, использование ИИ в этой области сопряжено с рядом значительных вызовов и рисков.

ПлюсыМинусы
Точность и эффективность: ИИ может обрабатывать и анализировать огромные объемы данных гораздо быстрее и точнее, чем человек, что позволяет получать точные прогнозыИскажение данных: если данные, на которых обучается ИИ, содержат несправедливые или предвзятые судебные акты, ИИ будет воспринимать их как справедливые, что может привести к неточному результату
Снижение затрат: автоматизация анализа дел сокращает время и ресурсы, необходимые для подготовки к суду, что снижает общие затраты на юридические услуги (помощь)Отсутствие прозрачности: многие ИИ-алгоритмы работают как черный ящик, что затрудняет понимание того, как именно они приходят к своим выводам Это вызывает вопросы о достоверности предложенного вывода
Объективность: ИИ при правильной настройке и обучении может предлагать объективные прогнозы, свободные от человеческих предвзятостейЭтические и правовые вопросы: использование ИИ в судебной системе поднимает множество этических и правовых вопросов, включая ответственность за ошибки ИИ и защиту данных


Прогнозирование ≠ электронное правосудие

Еще одним важным направлением в использовании технологий в правовой сфере являются системы так называемого электронного правосудия, но они существенно отличаются от систем, предназначенных для прогнозирования исходов споров. Хотя обе системы и связаны с цифровыми инновациями, они имеют разные цели и функции.

Электронное правосудие направлено на улучшение доступности и эффективности судебной системы путем использования информационных технологий. Основная цель — упростить и ускорить судебные процессы, сделать их более прозрачными и доступными для всех участников. Интеграция системы электронного правосудия в правовую систему страны, как правило, начинается с внедрения электронного документооборота, онлайн-платформ для подачи исков, систем управления делами и видеоконференций. Однако оно может включать и использование ИИ для разрешения споров.

Прогнозирование судебных споров с помощью ИИ в свою очередь направлено лишь на анализ и предсказание исходов споров, что делает такие системы более безопасными в использовании. Основная цель таких ИИ заключается в предоставлении юристам и сторонам в судебном процессе дополнительных доводов для принятия более обоснованных решений, что может поспособствовать уменьшению неопределенности, связанной с рисками обращения в суд.

Однако важно отметить, что прогнозирование судебных споров не заменяет человеческого опыта и анализа. Хотя ИИ и способен предсказывать исходы каких-либо дел, принятие конечного решения остается в компетенции судей, которые учитывают множество факторов и принимают решение основываясь в том числе на своем внутреннем убеждении. Таким образом, прогнозирование судебных споров с помощью ИИ служит лишь вспомогательной функцией, направленной на улучшение процесса правосудия и, в отличие от систем электронного правосудия, не должно регулироваться на законодательном уровне.

709 Shape 1 copy 6Created with Avocode.
Последнее
по теме